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Abstract. The Dirac equation for a system of fermion and dyon is separated into 
decoupled ordinary differential equation in the Robertson-Walker metric. Energy levels 
of bound states for a fermion and a dyon with charge Zd<Z and for ja[q[tt are 
obtained. If dyons are indeed present in the universe, they have an interesting. astronomi- 
cal observation. 

1. Introduction 

Since the most satisfactory way of writing Dirac equation is in the framework of the 
spinor formalism, the spinorial basis of the Newman-Penrose formalism has been the 
subject of interest and discussion for a long time [l]. Chandrasekhar [ 2 ]  has separated 
the Dirac equation in the Kerr geometry. The Dirac equation for an electron around a 
Kerr-Newman black hole has also been separated into decoupled ordinary differen- 
tial equations [3]. 
On the other hand, the problem of bound states of a fermion in a fixed Dirac 

monopole [4] or in a non-Abelian monopole [5] has been extensively discussed [6-271. 
As is well known f3r the system of a fermion and a Dirac monopole, there is the 
Lipkin-Weisberger-Peshkin (LWP) difficulty [26] in the angular momentum states 
j =  141 -f which shows up in the fermion's radial wavefunctions at the origin. The 
radial wavefunctions of the fermion in the angular momentum state j =  141 - $ do not 
vanish at the origin. This means that the fermion in these states goes through the 
monopole; thus, the Hamiltonian of the system is ill-defined at the origin. To avoid 
this difficulty, an infinitesimal extra magnetic moment is endowed to the fermion by 
Kazama and Yang [7,8]. In [Ill the authors showed that for the system of a fermion 
and a Dirac dyon there is also the LWP difficulty in the angular momentum states 
j >  141 + f when the dyon charge 2, exceeds some critical value &. In order to avoid 
the LWP difficulty, besides the Kazama-Yang term -(Kq/2Mr')BX.r, the term 
i(KZZd$/2M?)y-r should be considered also. But in the case Z d < z ,  the 
Hamiltonian of the system is well defined at the origin, so we can solve the bound- 
state energy for j%lql+f without the Kazama-Yang term and the term 

5 On leave of absence from East China Institute for ,meoretical Physics, Shanghai 200237, People's 
Republic of China. 
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i(KZZd&2M?)y*r [Ill. The results show that the bound-state energy is hydrogen- 
like [15] in the flat space-time. 

In this paper, the analysis starts with the Dirac equation coupled to general 
gravitational and electromagnetic fields. The Dkac equation for a system of fermion 
and dyon is separated into decoupled ordinary differential equation in the 
Robertson-Walker metric. Energy levels of bound states for a fermion and a Dirac 
dyon with charge Z,<Z and for j>lq1++ are obtained by using the perturbation 
expansion in the closed or open Robertson-Walker metric. These energy levels 
coincide with those of the normal solution in the Rat space-time when the cosmologi- 
cal radius goes to infinity. 

Xin-zhou Li and Jian-ru Zhang 

2. The equation of dyon-fermion system in the Rnbedu-Walker metric 

The analysis starts with the Dirac equation coupled to general gravitational and 
electromagnetic fields. In two-component spinor notation [2], the equation is [3] 

a ( V A B -  + iZeAAB.)P" + iMQa = 0 
v5(vAW - iZeA,,,)@ + i M B 8  = o 

(2.1) 

(2.2) 
where VABp is the symbol for covariant differential, AAB- is the electromagnetic vector 
field potential, Ze is the charge or coupling constant of the fermion to the vector field, 
M is the particle mass, and Pa and &" are the two-component spinors representing the 
wavefunction. The bar denotes complex conjugation, &, is the complex conjugate of e,. It is convenient to consider the complex conjugate of (2.2) and further write 

The resulting equations are 
F l = P  F2= PI GI = Ql' and Gz= -0'. (2.3) 

a ( o + E - - p + i ~ ~ , ) F , + ~ ( 6 + n - a + i e A ~ ~ ) F z = i M G ,  
a ( A  + ~ - r + i e A , ~ ) F 2 + a ( 6 + B - r + i e A , m " ) F l = i M G *  

.\r(D +i-p+ ieA$')GZ-fl(6 + ~ -  d+ ieA,mU)GI =iMF, 
l h ( A  +p- f+ ieA#)GI - a ( 6  +b-  i+ ieA,r3')G2 = iMF, . 

(2.4) 

The Robertson-Walker metric is given by 
d p  = a'(dz2 - [dX2+ F(x)(dG2+ sin' Gdq')]] (2.5) 

where a is the cosmological radius and s k ) = s i n ~ ,  x and sinhx, respectively, to 
closed, flat and open cosmological models. We will first discuss closed space-time. 
From (2.5), the following null tetrads (6, n,, m,, fi,) can be constructed 

s = & ( a ,  -a ,0 ,0 )  

1 
m,=-(O,O,asin~, iasinxsine) 

$2 

1 
fi,,=x(O, 0, a sin x, -ia sin Xsin 6 ) .  
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The null vectors satisfy the orthogonality conditions, Pnp= 1, m”mP= -1, while all 
the remaining scalar products are zero. Thus, the directional derivatives is given by 

The non-zero spin coefficients are obtained from (2.6) as follows 

p=-- --cot2 &(: ) 

(2.7) 

1 
.U == (t + cot ”> , 

where h = da/dz. 
In order to simplify the calculation, we set the position of the dyon at the polar 

point. Then the four-component electromagnetic vector field potential A, is given by 

where L=ZZde2, z is the electric charge of the fermion which is an integer, 2, is the 
electric charge of the dyon, which need not be an integer. Here A.  is different from A. 
given in 1281, but to first-order approximation they are the same. A, is the vector 
potential of the dyon. In order to remove the string of singularities, A, is defined in 
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terms of two or more functions in a corresponding number of overlapping regions [6]. 
Substituting (2.7), (2.8) and (2.9) into (2.4), we have 
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(2.10) 

where 

f = = , P O  y ' = f  ' = a  sin Xsin e ' 9  

and 

1 1 1 1 
(2.11) 

(2.12) 

where p are the chiral representations of normal Dirac matrices in flat space-time 
P=(O -7 0 U' o) 

I O  
Relation with the Dirac representation: 

where 
Y!hi,.%! = ~Y6iraJJ '  

The wavefunctions @chid are foursomponents spinors defined by 

By substituting (2.14) into (2.10), we have 
[iy"(a, + ieA,,) - M]*,,, = 0. 

Its component form is 

($ &+ i $)I?, - & [ $ - -&j ($ + ieA.>] p2 - MUG, = 0 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(;+ &+ i $)p2 -& [ $+ -&j ($+ ieA.)]& - iMaC?, = 0 

(: + &+i&) C, - & [A - (2.18) (A+ ie4,)]e2 -iMafi, = o 
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It is reasonable to assume that the radius of the universe a(z) is not changed in the 
transition process (less than lO-'s), that is 4 7 )  is constant in the whole calculation. 

Under the Dirac representation, the wavefunction y =  U+tp*iral. For the states of 
j> 141 + 3 there are two types of simultaneous eigensections off,  J,  and H in analogy 
to the treatment in the system of monopole-fermion [7]: 

where 

(2.21) 

where Y,,,, is the monopole harmonic whose basic properties are tabulated in the 
appendix [6 ,27] .  

In (2.19) and (2.20), hi&) (i = 1,2,3,4)  are defined in a rather different way then 
in [7] ,  thus, the system of equations satisfied by hik) is obtained in the compact form 
which is easily treated. According to Lemma I of [7], we obtain, for type A: 

and for type B: 

where 
p = [( ; + +)Z - qZ]'" > 0 
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and q = ax, q = Zeg, g is the strength of the magnetic monopole, Dirac quantization is 
that eg = n/2 (n = 0, 21, +2, . . ,) [4]. 
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For the flat Robertson-Walker cosmological model, we have, for type A: 

(a, - $hl + (M + E + :) h, = 0 

and for type B: 

M-E--  h3+ a,,-- h4=0 ( 3 ( 3 
a,+- h3+ M+E+- h,=O ( 3 ( 3 

(2.25) 

(2.26) 

which are the normal Dirac radial equations for the system of a fermion and a Dirac 
dyon in the flat space-time [Ill,  if q is replaced by r. For the open cosmological model, 
we have, for type A 

and for type B 

(2.27) 

(2.28) 

3. Wavefunetions of bound states of a fermion and a Dirac dyon in flat space-time 

We can solve (2.25) and (2.26) according to the standard treatment in quantum- 
mechanics textbooks [29]. When r+O, equation (2.26) is reduced to 

Setting h,(q) =all’, h2(q)=&’, where a andj3 are constants, from (3.1) we obtain 

La - (~+p)j3 = 0 
(v -p)a +AD = 0. 



Bound states of a fermion-dyon system 4457 

From conditions of non-zero a and p, and the finiteness of k, (q)  and h,(q) when q-+O, 
we have 

Setting 

we have 

and 

If we set 

v= b2-2)1‘z=[(j++)2- $- (zZdez)z]v2>o. (3.3) 

(3.9) 
h,@) = ~ P ( M  + E)”ze-p’z~”(Q3(~) - Q 4 W )  

h(d = 2p(M - E)V2e-%”(Q,@) + e,@)) 
then Q,(p) satisfies (3.7), and Q4@) satisfies (3.8). 

finite solutions at the origin are the confluent hypergeometric function F(a, p, p) 
Equations (3.7) and (3.8) are standard confluent hypergeometric equations. Their 

2~ + 1 ,  P) 
(3.10) Q,, 3@) = A  i,3F(v 

Qz.~(P)=Az.~F(v+ I - L E ~ P ,  2v+ 1 , ~ )  
from (2.25), (3.5) and (3.10). the radial wavefunctions are 

R,(p) =2phl(p)/p= 4p2(M+ E)’ne-p’zp”-l[A,F(v - AE/p, 2v + 1, p) 

+ A ~ F ( v  + 1 - LE/p, 2~ + 1 ,  p)] 

Rz@) =2ph,@)/p=4p2(M- E)U2e-@’2p”-1[A1F(v -LE/p,  2v + 1, p) 

-A,F(v+l-1E/p,2v+l ,p) l .  (3.11) 

When p+O, F(a,p,p)+O, from (3.6), we have 

v - LE/p 
A -  ’ -p + LE/p A’ ’ 

Similarly, for A3 and Ad,  we have 

v - LE/p 
A4 = A3. p - L M / p  

(3.12) 

(3.13) 

When p - m ,  F(a,p,p)+eP, so R i b )  is divergent. In order to avoid the 
divergence, we must set v-AE/p=-n, (n=O, 1,2, . .  .) and v+l -LE/p=-m,  
(m=O, 1, 2, ...). When n=O,  F(v-LEIp, 2 v f 1 ,  p) is finite, but F(v+l-LEIp,  
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2v+ 1,p) is still divergent. In order to make R i b )  finite, we must have n=m+ 1, 

(3.14) 
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(m=O, 1 , 2 , .  ..),so 

v-,IElp= -n, ( n = l , 2 , 3 , .  . .). 
Thus we obtain 

I-'" 
(3.15) 

where n = l ,  2, 3 ,  ... ; jalql+f; q=Zeg#O; eg=*i,  k l ,  *$, . .  .; p= 
[( j + +)2 - q2]In> 0;  1 = ZZ,e*. Notice that the total angular momentum j ,  which is 
defined in [7], is different from the total angular momentum in ordinary quantum 
mechanics. Here, jcan take integer as well as half-integer values. The spectrum (3.15) 
is hydrogen-like, but is different from the atomic 0; molecular spectrum. 

By using the relation 

and (3.12) and (3.14), (3.11) is reduced to 

n (n - l)!r(zv+ 1) - 
p + 01' + n2 + 2nv)n r(2v + n) 

Similarly, we have 

(3.16) 

(3.17) 

(3.18) 

n ( n -  l)!r(2v+ 1) - 
p-(u2+n2+2nv)"2 r(zv+n) 
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Because $A) and 4;) are normalized, radial wavefunctions satisfy the following 
normalization condition 

Using the normalization condition of L;(z) 

(3.19) 

(3.20) 

we have 

4. The energy levels of the dyon-fermion system in closed and open cosmologlcsl 
models 

it is difficult to find an exact solution in closed or open cosmologial model. W e  
estimate the iduence of terms including %/sin% and ,y/sinh,y on the energy levels, by 
expanding them and considering the first approximation 

-- 
sin% 6 a 

Since the region of the system is about of the order of magnitude of the Bohr 
radius, which is very much less than the cosmological radius, +&/a)* can be taken as 
a perturbation. We know the energy levels En.q.i of the dyon-fermion system in the 
Rat space-time. We also can obtain the energy levels of the closed and open 
cosmological models by the method of perturbation expansion 

where Ab is the average radius of region of the fermion-dyon system and there is a 
positive sign for the closed space-time and a negative sign for the open space-time; 

>O. 
Notice that the total angular momentum j ,  which is defined in [7], is different from the 
total angular momentum in ordinary quantum mechanics. Here, j can take integer as 

n = l , 2 , 3 , .  . . ; j ~ 1 q 1 + k q = Z e g # O , e g = f f , + l ,  +*, . .  . ; p = [ ( j + ~ )  1 2 -  q z m  ] 
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well as half-integer values. It is worth mentioning that (2.22) and (2.23) in the closed 
Robertson-Walker metric and (2.27) and (2.28) in the open Robertson-Walker 
metric return to the normal Duac equation, when a-? m . Similarly the energy levels 
(4.2) also return to normal energy levels (3.15), when a-? m.  Therefore, the Dirac 
equation of the fermion-dyon system has been extended to the case of the 
Robertson-Walker metric in terms of a spin coefficient method. The energy spectrum 
(4.2) is hydrogen-like but it is quite different from the ordinary hydrogen-like one. If 
dyons exist in the universe, (4.2) leads to the possibility of looking for dyonic bound 
states, for example, from astronomical observations. Let us discuss the energy 
spectrum (4.2) as follows: 

(i) When q takes half-integer values, the total angular momentum j of this system 
takes integer values, leading to a new series of energy spectra that do not exist in the 
ordinary hydrogenlike atom. 

(ii) In the case of flat space-time, when q takes integer values, j takes half-integer 
values, as with the case of the ordinary hydrogen-like atom. But compared with the 
energy level of the hydrogen-like atom 

Xin-zhou Li and Jian-zu Zhang 

-1R 4 (4.3) [ ( n + [ O ' + f ) Z - ( z e 2 ) 1  1 
(Ze')' EC,=M 1+ 

En,q.i is shifted down. Now we consider the amount of shift. Let the dyon charge 
Z d = + l .  Take Z =  -1, Iql=l, j = e .  For the n = l  energy level, from (4.2) and (4.3), 
w e  have (E,~.,,-E~,)/Mi=lO-Zaz. On the other hand, comparison of AE= 
E(n'=l)-E(n=O), (4.2) and (4.3) shows [ A E , ~ , i - A E ~ i ) / M ; . 1 0 - 2 a 2 .  Let it be 
noted that these differences can be measured by existing experimental techniques. 

(iii) The search for free monopoles has not yielded any definite results due to many 
difficulties, First, we do not know how small the monopole flux is (for example, 
according to Parker's limit 0 < 3  x lO-'cm-' yr-' [30]), so we do not know how long 
we have to wait before we record a possible event; second, the estimation of 
monopole mass is model-dependent, for example, the mass of the classical monopole 
is about the order of 10-102GeV, and the mass of the superheavy monopole in grand 
unified theories is about the order of 1OI6 GeV, but we are ignorant of its definite 
value. This brings about difficulty in searching for a monopole in accelerator 
experiments (if the mass of the monopole is within the energy region reached by 
accelerators). On the other hand, the approach to the search for dyons (or mono- 
poles) under the bound condition, compared with the approach to the search for the 
free monopole, may be somewhat easier to perform. Because (a) the superheavy dyon 
is treated as an external potential so that its mass does not appear in the energy 
spectrum formula (4.2); (b) if dyons were plentifully produced in the early universe 
and formed into bound states with charged fermions, perhaps the radial electromag- 
netic spectra of the bound systems have already been recorded on astronomical 
observations over a long period. 

(iv) After the epoch of recombination, the cosmological radius a ( r )  is about 
5 x lP1y = 5 x 1021 cm, so 4 (Abla)'- 10". This is too small to be observed even by 
modern techniques. Z ,  is the electric charge of the dyon which need not be an integer. 
if we consider that the dyon has a large charge Z,,  the revision term of (4.2) would 
become much larger and more important, when ZZdez is near p = [( j +  4)'- q']". 

(v) Of course, any attempt to detect monopoles or dyons is a challenging 
enterprise because if they still exist in the present universe they are surely rare. 
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In conclusion, the energy spectrum (4.2) may initiate a promising new approach to 
the search for dyons in the bound condition. If dyons are indeed present in the 
universe, they have an interesting astronomical observation. 
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Appendix 1. Some properties of monopole harmonics [6,27] 

L 2 y q . L , M =  L (L  + l ) Y q . L . M ,  

L =  141, 14l+ 1,141 +2, . . . , 
~ z y q , L , M = M y q 3 L , M  

M = - L , - L + 1 , .  . . , L .  (A.1) 

For the fixed q ,  Y,. L. is orthogonal and normalized. 

L.M(e, q) = yL,  M ( e ,  q) 

which is ordinary harmonics. 
[ (2L+1)(2L'+1)(2L"+l)  1 Y q . L . M Y q ' . L . . M , = ~  ( - l )L+L'+L"+f+" 4 z  

L" 

where M"= -M - M',  4"= -q - q', L" takes all the possible values of coupled L and 
L'. (A.4) is the addition theorem of monopole harmonics. 
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